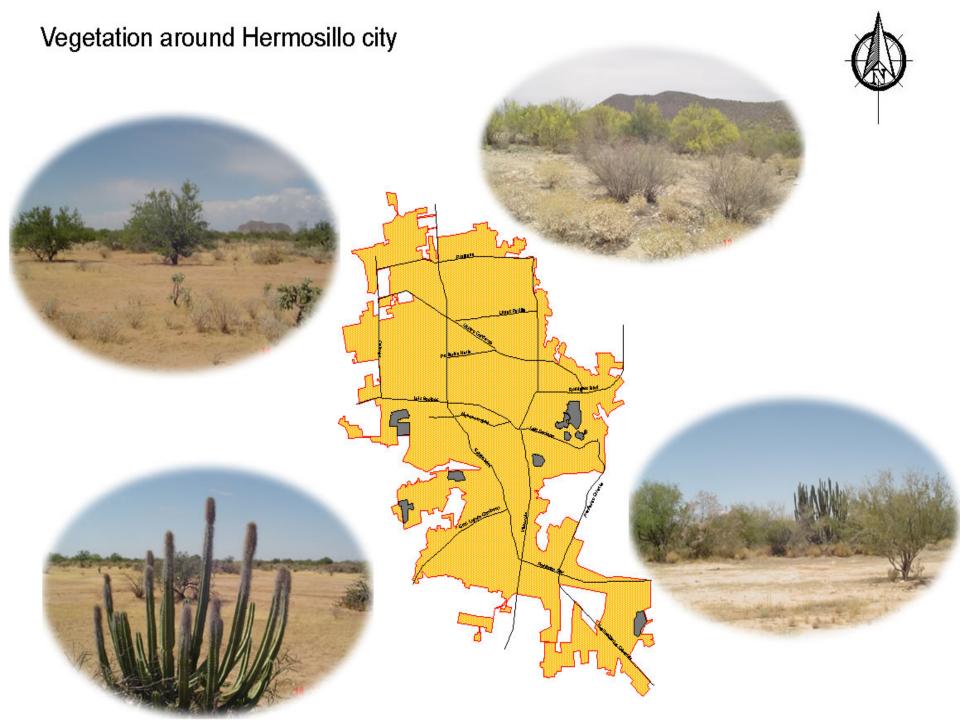
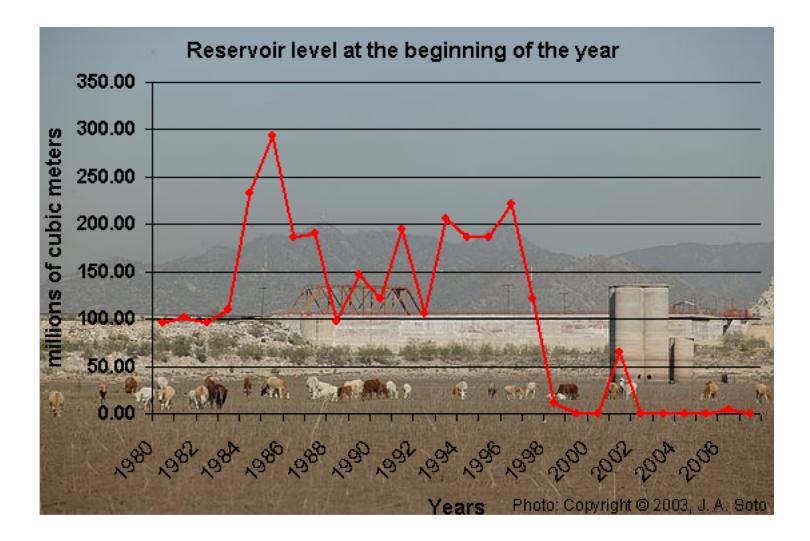

Reforestation with native plants in Hermosillo, Sonora **Mexico** Luis Alan Navarro **RNR 573 Final** paper 2008

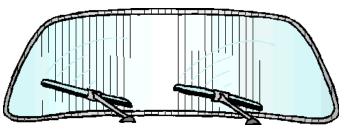

About Hermosillo:

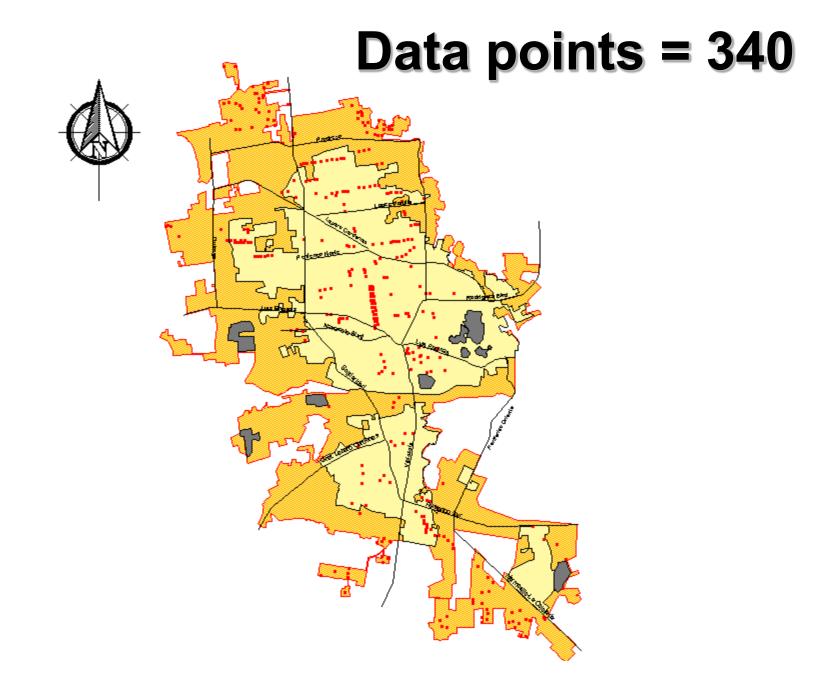

- It's my hometown
- Population in 2005: 641,791
- City area in 2005: 30,206 acres
- Elevation is about 708 ft
- Rain: 12.6"
- Temperature in July reaches 118°F

Statement of the problem:

- City located in a very arid environment
- City has severe drinking water shortages due to recently drought periods
- During 2006-2008 the neighborhoods had only 8 hours of water supply
- Homeowners and developers are not reforesting with native plants which are resistant to drought and require low watering. Instead they plant exotic species.

Objectives


- To sample (counting) the number of streetside and front yard trees, recording the number of trees per species.
- To divide the city into two areas: that developed before 1992, and the one developed after that.
- To find if the urban reforestation have changed in recently developed areas compared to those developed before 1992.


Research questions

- Are newly developed areas planted with more native species? Ho: Yes
- Do recently developed areas have more trees? Ho: No
- Do recently developed areas have more diversity? Ho: No

Transect sampling

Variables

Variable	Description
trees_sw100	Sidewalk trees @ 100 meters
pnative_fy	Percentage of native trees in front yard
pnative_sw	Percentage of native trees @ 100 meters of sidewalk
sid_fy	Simpson's Index of Diversity in front yard
sid_sw	Simpson's Index of Diversity along sidewalk

The Simpson's index of diversity (SID) value ranges between 0 and almost 1, the greater the value, the greater the sample diversity. The index represents the probability that two individuals randomly selected from a sample will belong to different species.

$$SID = 1 - \frac{\sum n(n-1)}{N(N-1)}$$

Results

- 61 different species were recorded
- The main tree in either front yards (29.706%) or sidewalk (47.647%) was Weeping fig

Mean differences

Variable	Means by group (0 = new; 1 = before 1992)		t-test (one- tailed) p values ¹	t-test unequal (one-tailed) p values ²	Mann-Whitney p values ³
pnative_fy (Ha: diff >0)	0	.080438	0.0340	0.0458	0.7185
	1	.0460099			
pnative_sw (Ha: diff >0)	0	.1422628	0.0037	0.0073	0.1187
	1	.0765517			
trees_sw100 (Ha: diff >0)	0	6.489051	0.1363	0.1497	0.3624
	1	5.630542			
sid_fy (Ha: diff <0)	0	.7346939	< 0.001	< 0.001	< 0.001
	1	.8826761			
sid_sw (Ha: diff <0)	0	.5478704	< 0.001	< 0.001	< 0.001
	1	.7514667			

Spatial autocorrelation

Variable	Moran's I by group (0 = new; 1 = before 1992)		Z	p value	Ho: there is zero spatial autocorrelatio n
pnative_fy	0	0.119	3.777	0.000	Reject
	1	-0.003	0.160	0.436	Not reject
pnative_sw	0	0.052	1.748	0.040	Reject
	1	0.037	2.896	0.002	Reject
trees_sw100	0	0.033	1.313	0.095	Not reject
	1	0.084	6.055	0.000	Reject
sid_fy	0	0.002	0.229	0.410	Not reject
	1	0.046	2.455	0.007	Reject
sid_sw	0	-0.027	-0.523	0.301	Not reject
	1	-0.007	-0.035	0.486	Not reject

Conclusions

- S Are newly developed areas planted with more native species? Ho: Yes
- O recently developed areas have more trees? Ho: No
- Do recently developed areas have more diversity? Ho: No

Future research

- More points and randomly distributed
- Use polygons, but not census tracts instead neighborhoods
- Record tree's age (seedling, young, old)
- Recently developed areas are less diverse this might be the developer's effect, what probably means that the absence of global autocorrelation might be a matter of scale, perhaps reforestation patterns densely sampled at neighborhood scale would show autocorrelation.
- Instead of "natives" it would be better to use drought resistant plants, regardless if they are exotic

Questions?

pan sicould

7000

1,000